A more detailed classification of symmetric cubic graphs

نویسندگان

  • Marston Conder
  • Roman Nedela
چکیده

A graph Γ is symmetric if its automorphism group acts transitively on the arcs of Γ, and s-regular if its automorphism group acts regularly on the set of s-arcs of Γ. Tutte (1947, 1959) showed that every cubic finite symmetric cubic graph is s-regular for some s ≤ 5. Djokovič and Miller (1980) proved that there are seven types of arc-transitive group action on finite cubic graphs, characterised by the stabilisers of a vertex and an edge. A given finite symmetric cubic graph, however, may admit more than one type of arc-transitive group action. In this paper we determine exactly which combinations of types are possible. Some combinations are easily eliminated by existing theory, and others can be eliminated by elementary extensions of that theory. The remaining combinations give 17 classes of finite symmetric cubic graph, and for each of these, we prove the class is infinite, and determine at least one representative. For at least 14 of these 17 classes the representative we give has the minimum possible number of vertices (and we show that in two of these 14 cases every graph in the class is a cover of the smallest representative), while for the other three classes, we give the smallest examples known to us. In an Appendix, we give a table showing the class of every symmetric cubic graph on up to 768 vertices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cubic symmetric graphs of orders $36p$ and $36p^{2}$

A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we  classifyall the connected cubic symmetric  graphs of order $36p$  and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.

متن کامل

Classifying pentavalnet symmetric graphs of order $24p$

A graph is said to be symmetric if its automorphism group is transitive on its arcs. A complete classification is given of pentavalent symmetric graphs of order 24p for each prime p. It is shown that a connected pentavalent symmetric graph of order 24p exists if and only if p=2, 3, 5, 11 or 17, and up to isomorphism, there are only eleven such graphs.

متن کامل

Classifying cubic symmetric graphs of order 8p or 8p2

A graph is s-regular if its automorphism group acts regularly on the set of its s-arcs. In this paper, we classify the s-regular elementary Abelian coverings of the three-dimensional hypercube for each s ≥ 1 whose fibre-preserving automorphism subgroups act arc-transitively. This gives a new infinite family of cubic 1-regular graphs, in which the smallest one has order 19 208. As an application...

متن کامل

Arc-Transitive Dihedral Regular Covers of Cubic Graphs

A regular covering projection is called dihedral or abelian if the covering transformation group is dihedral or abelian. A lot of work has been done with regard to the classification of arc-transitive abelian (or elementary abelian, or cyclic) covers of symmetric graphs. In this paper, we investigate arc-transitive dihedral regular covers of symmetric (arc-transitive) cubic graphs. In particula...

متن کامل

Symmetric Cubic Graphs of Girth at Most 7

By a symmetric graph we mean a graph X which automorphism group acts transitively on the arcs of X. A graph is s-regular if its automorphism group acts regularly on the set of its s-arcs. Tutte [31, 32] showed that every finite symmetric cubic graph is s-regular for some s ≤ 5. It is well-known that there are precisely five symmetric cubic graphs of girth less than 6. All these graphs can be re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006